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We investigate the flow of a thermally and concentrationaUy inhomogeneous binary mixture of gases near a 
solid nonevaporating surface. Using the method of half-space moments to solve the kinetic equation with the 

Boltzmann collision integral, we determine the velocity distribution function of the molecules of the mixture 

components. The slip velocity of the mixture is calculated. 

Theoretical investigations of the state of inhomogeneous mixtures of gases near the surfaces of bodies 

immersed in a flow were carried out in a number of works (see, e.g., [1-6 ]). In most cases use was made of model 

forms of the collision integral [1-4 ]. In [5, 6 ], a kinetic equation with the Boltzmann collision integral was solved. 

But in [5 ] the author limited the solution to two moments in the distribution function. The authors of [6 ] used 

four moments and considered the specific case of a dilute mixture where the concentration of the molecules of one 

of the components was small compared to that of the other. Moreover, in [6 ] an error was made when the moments 

of the collision integral of discontinuous velocity functions were calculated. It should be noted that in [1, 5, 6 ] only 

diffusional slip was considered. There, thermodiffusional effects were not taken into account. 

Let us consider the flow of a binary mixture of gases along a solid plane wall in a field of tangential (to its 

surface) temperature and concentration gradients of the mixture components, provided that the mass velocity of 

the gas increases uniformly with distance from the wall. It is assumed that changes in the concentration, 

temperature, and mass velocity of the mixture are small over the mean free path of its molecules 2, and the gradients 

of the temperature T and the relative concentration of the first component of the mixture nl0 = nl/n ( n  = nl + n 2 )  

coincide in direction with the mass velocity of the mixture U. The latter assumption does not diminish the generality 

of the results, since otherwise the slip velocity is merely determined as the vector sum of the velocities of diffusional, 

thermal, and isothermal slips. 

Let us introduce a coordinate system with origin on the wall surface. The X axis is directed along the 

normal and the Y axis along U. The state of the mixture is described by the velocity distribution function of the 

molecules of the mixture components 

(2m,] , , 
f i ( x '  Vi) ----fi 0 1 + ~ )  CiyUy +~OC_ E -1-~0 B + t:I) i ( x ,  vi) (1) 

Here d~i(x, v i ) is the correction to for the volumetric distribution describing the influence of the wall. Outside the 

Knudsen layer, i.e., when x >> 2, qb i = 0: 

f i ~  

i = [D 0+ ! OnlO [A O+  C-E O, @ 1 %  y + 
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1 0 In T OUy. 
+ Ai S13/2 (c2)]Ciy O-"---y-- + BicixCiy OX ' 

~p~ i OnlO 0 A 1 0 2 In T 
= DBCixCiy ~ + [ABi + Bi S15/2 (c~)] CixCiy OxOy 

1 (mi/2kT) ta S v ( x ) =  1 + v - x ;  e i= v i. 

The coefficients A O, A~, Bi, D 0, D~' AO~ All, and D~ are given in [7 ]. The terms in the Chapman-Znskog function 

~P~-E involving A 0 and D~ describe thermodiffusional effects. 

The distribution function (1) takes into account the Barnett terms ~ .  Generally speaking, Barnett slip is 

an effect of higher order of smallness, and therefore it can be neglected when determining the gas flow velocity 

along a plane surface. However, its calculation is of interest in its own fight. Moreover, account for Barnett slip is 

necessary when considering a flow of gas past a curved surface, which will be the subject of the next paper. 

The correction d~i(x, vi) is determined from the solution of the Boltzmann linearized equation [7 ] 

OdPi -- rtf Iii (~i) -- nln2112 ((I)l -- ~2) Yi ~ = 
(2) 

(Iiy is the linearized collision integral defined in [7 ]). 

In accordance with the traditional procedure of the method of half space-moments [1 -6  ], we expand ~i  
in a series in half-space velocity polynomials. Limiting ourselves to four moments, we write 

3 
(Pi (x, vi) = ~, a I (x) Pl (vi), (3) 

l=O 

PO = Cy , P1 = cy sign Cx , P2 = CxCy , P3 = CxCy sign Cx , 

sign x = 1 (x > 0) , sign x = - 1 (x < 0).  

The coefficients ai(x) are determined by solving a system of differential moment equations constructed by 

multiplying Eq. (2) by Pi and integrating over the entire space of velocities: 

where 

(2kT) l /2  ~l Oal i ~l ( i ~1 i j )  m-- T ~ J k l = -  niWkl +.= n:Ykl , 

i 1 f fi 0 Pk (Ci) P! (Ci) dv i , dkl = n5 

i q 
Wkl = [Pk (Ci), PI (Ci) 1i, )'kl = [Pk (Ci), Pl (C]) 112. 

(4) 

The notation of the bracketed integrals corresponds to the traditional one adopted in [7 ]. Analytical expressions 

for these integrals in the case of molecules interacting as rigid spheres are given in the Appendix. 

The solution of system of equations (4) has the form 

3 , , { } a l= ~, C vatvexp - T v X  , (5) 
,ij~l 
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Here 7v is determined from the condition of the determinant of the system of algebraic equations obtained upon 

substitution of solutions (5) into Eqs. (4) being equal to zero. In this case, the positive roots are retained. The 

coefficients a~v are expressed via determinants of rank 7. The integration constants Cv are determined from kinetic 

boundary conditions for the reflection of gas molecules from the wall: 

VixY[ = Q fYt , (6) 

a I i  = - f z i  dvj,  
Vlx<O 

where R(v I, vi) is the probability that a molecule with the velocity v i acquires the velocity v i as a result of reflection 

from the wall. The superscripts " - "  and "+" denote distribution functions of molecules incident on and reflected 

from the wall, respectively. 

Following the procedure developed in [8, 9], we present conditions (6) in moment form. For this, we 

multiply them by Viy and VixViy and integrate over the positive half-space of velocities: 

f l:ix Viy f+ dv i = f Viy ~ f?  dv i , 
Vix > 0 Vix > 0 

2 + Q f~ dv i f Vix Viy fi dvi = f Vix Viy 
Vix>O Vix>O 

(7) 

Substituting the distribution function (1), (3), (5) into Eqs. (7) and integrating, we obtain a system of 

algebraic equations for determining the integration constants and the slip velociiy of the mixture, the solution of 

which yields 

Onlo ~ OT OUy 02nlO ~ 02T 
Uy = KDsI D12---~- + KTSI p--- ~ O---f+ KSl2 ~ -  + KBDsI Dt2~ o--~-~y + I~TSI 71 pT OxOy" 

Here, the coefficients of mutual diffusion DIz and dynamic viscosity ~/of the mixture, which are calculated in the 

first approximation of the Chapman-Enskog method [7 ], are separated; 2 = rl(zc/2pnkT)l'2; p = nlm~ + nxm2. 
The values of the kinetic coefficients calculated for specific relationships between the masses, diameters, 

and concentrations of the molecules of the mixture components when the molecules are represented by rigid spheres 

in the case of pure ly  d i f fuse  reflection from the wall ( f~ f -=  Vix ~) are given in Tables  1-7, where 

Mi = mi/(ml + m2); Ri = cri2/(Crl + or2); ai is the effective diameter of the molecules of the i-th mixture 

component. All the calculations in the tables are given for the solid-sphere model of the molecules on condition of 

purely diffuse reflection from the surface. 

Attention should be paid to the dependence of the diffusional slip coefficient of a dilute mixture on the 

relationship between the diameters of the molecules of its components (Table 1). In the region R1 < 0.6 for 

M1 < 0.6 we observe a decrease in KDS l with R 1. Such a behavior of the dependence of KDS l on R 1 is due to the 

contribution of the thermodiffusional terms in the Chapman-Enskog function to the slip velocity. Neglect of the 

indicated terms leads to a qualitative change in this dependence, i.e., to growth of KDS l with a decrease in R 1. In 

particular, for R 1 = 0.2 and M1 = 0.1 the quantity KDS 1 is equal to 7.52. We can also note that with other 

relationships between the masses, diameters, and concentrations of the molecules of the mixture components the  
contribution of thermodiffusional effects to the diffusional slip velocity amounts to at least 10%. 

Of particular interest is the calculation of the slip velocity due to the Barnett terms in the distribution 
function (Tables 3 and 4). In [10, 11 ] the Barnett slip velocity is calculated as 

A_K B U~y = - r/ St %y,  (8) 
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T A B L E  1. Values  of KDS 1 at  n20 = 0.001 

M1 R1 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.08 

-1.42 

-1.79 

-1.40 

-0.79 

-0.21 

0.17 

0.27 

0.12 

5.76 

1 .70  

0.59 

0.21 

0.10 

0.08 

0.08 

0.04 

-0.02 

6.03 

2.06 

0.89 

0.40 

0.18 

0.07 

0.01 

-0.04 

-0.08 

5.63 

1 .95  

0.84 

0.36 

0.12 

-0.00 

-0.07 

-0.11 

-0.13 

4.93 

1.64 

0.64 

0.21 

0 

-0.11 

-0.16 

-0.19 

-0.17 

4.01 

1.20 

0.36 

0.01 

-0.16 

-0.24 

-0.27 

-0.27 

-0.23 

2.89 

0.66 

0.01 

-0.25 

-0.36 

-0.40 

-0.39 

-0.36 

-0.29 

1.58 

0.02 

-0.40 

-0.54 

-0.59 

-0.57 

-0.53 

-0.47 

-0.36 

0.11 

-0.71 

-0.87 

-0.88 

-0.84 

-0.78 

-0.69 

-0.59 

-0.44 

T A B L E  2. Values  of KDS l at  nl0 = n20 = 0.5 

R1 
M1 .... 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
0.1 

0.2 

0.3 

0.4 

0.5 

1 .00  

0.96 

0.81 

0.64 

0.48 

0.87 

0.84 

0.70 

0.55 

0.39 

0.74 

0.70 

0.58 

0.43 

0.27 

0.60 

0.56 

0.44 

0.29 

0.14 

0.46 

0.41 

0,29 

0.15 

0 

0.35 

0.28 

0.15 

0.01 

-0.14 

0.26 

0.17 

0.03 

-0.12 

-0.27 

0.19 

0.08 

-0.07 

-0.23 

-0.39 

1.13 

0.01 

-0.15 

-0.31 

-0.48 

T A B L E  3. Values  of KBsI at n20 = 0.001 

M1 R1 
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

-19,51 

-8.27 

-4.56 

-2.74 

-1.69 

- 1 .02  

-0.58 

-0.29 

-0.10 

-18.78 

-7.93 

-4.33 

-2.58 

- 1 .59  

-0.92 

-0.50 

-0.23 

-0.06 

-16.99 -13.44 

-7.14 -5.64 

-3.84 -2.92 

-2.22 -1.57 

-1.29 -0.80 

-0.71 -0.33 

-0.34 -0.04 

-0.11 0.11 

0.01 0.16 

-7.11 

-3.06 

-1.37 

-0.49 

0 

0.29 

0.43 

0.46 

0.39 

3.27 

1 .08  

1 .07  

1.18 

1 .24  

1 .24  

1.16 

1.01 

0.74 

19.25 

7.34 

4.72 

3.67 

3.07 

2.64 

2.24 

1.81 

1.27 

42.60 

16.40 

9.97 

7.22 

5.68 

4.62 

3.76 

2.95 

2.02 

T A B L E  4. Va lues  of KBSI at nl0 = n20 = 0.5 

R1 
M1 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

75.36 

29.03 

1 7 . 2 4  

12.13 

9.26 

7.34 

5.85 

4.50 

3.04 

0.1 

0.2 

0.3 

0.4 

0.5 

-6,04 

-5.60 

-4.86 

-4.09 

-3.34 

-4.58 

-4.44 

-3.92 

-3.31 

-2.70 

-3.14 

-3.19 

-2.85 

-2.39 

-1.90 

- 1 .90  

- 1 .98  

-1.74 

-1.39 

-0.99 

-0.93 

-0.93 

-0.70 

-0.37 

0 

-0.24 

-0.08 

0.22 

0.58 

0.99 

0.21 

0.56 

0.96 

1 .42  

1 .90  

0.51 

1.01 

1 .54  

2.11 

2.70 

0.69 

1 .32  

1.97 

2.64 

3.34 

whe re  o~xy is the  s t ress  t enso r  due  to t he  Barne t t  t e rms  in the  d is t r ibut ion  funct ion.  For  a s imple  gas this  approach  

gives KBsI = --3, KSl = --3.44. T h e  d i f fe rence  f rom the  r e su l t s  of a di rect  calcula t ion (KBsl = --3.57) am o un t s  to 

3%. In the  case  of  a m i x t u r e  of  gases  this  d i f f e r e n c e  for  K~s t usua l ly  does not  e x c e e d  10%.  F o r  t he  d i f fus ional  

s l i p  veloci ty  the  d i f fe rence  is m u c h  grea ter .  For  example ,  accord ing  to Eq. (8), w h e n  n20 = 0.001, M1 = 0.1, R1 = 

1 .8 ,  we ob ta in  KBsI = 11.4, which  differs  f rom the  co r re spond ing  value  in T a b l e  3 by  a lmos t  an  o r d e r  of magn i tude .  
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TABLE 5. Values  of KTSl at  nlO = n20 = 0.5 

RI 
M1 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

0.1 

0.2 

0.3 

0.4 

0.5 

1.35 

1.30 

1.28 
1.24 

1.16 

1.22 
1.21 

1.23 

1.22 

1.16 

1.10 
1.13 

1.17 
1.19 

1.16 

0.99 
1.04 

1.11 
1.16 

1.15 

0.90 

0.97 
1.06 

1.13 

1.15 

0.83 
0.91 

1.01 

1.10 

1.15 

0-76 
0.86 

0-97 
1.08 

1.16 

0.71 

0.81 

0.94 
1.06 

1.16 

0.66 

0.78 

0.91 
1.05 

1.16 

TABLE 6. Values of KBsl at n t0  = n20 = 0.5 

R1 
MI 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

0.1 

0.2 

0.3 

0.4 

0.5 

-8.89 

-6.74 

-5.76 

-5 . t2  

-4.58 

-6.84 

-5.60 

-5.02 

-4.62 

-4.25 

-5.17 

-4.58 

-4.32 

-4.13 

-3.92 

-4.06 

-3.82 

-3.77 

-3.74 

-3.66 

-3.45 

-3.38 

-3.45 

-3.53 

-3.57 

-3.17 

-3.19 

-3.34 

-3.52 

-3.66 

-3.02 

-3.13 

-3.38 

-3.66 

-3.92 

-2.91 

-3.13 

-3.47 

-3.86 

-4.25 

-2.84 

-3.15 

-3.57 

-4.06 

-4.58 

TABLE 7. Values  of Ksl at n l0  = n20 -- 0.5 

R1 
M1 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

0,1 

0.2 

0.3 

0.4 
0.5 

1.49 

1.41 

1.36 

1.33 

1.32 

1.39 

1.33 

1.29 

1.27 

1.26 

1.32 

1.26 

1.22 

1.21 

1.20 

1.29 
1.22 

1.18 
1.17 

1.16 

1.30 

1.22 

1.17 
1.15 

1.15 

1.34 

1.24 

1,20 

1.17 

1.16 

1.38 

1.29 

1.24 

1.21 

1.20 

1.43 

1.34 

1.29 

1.27 
1.26 

1.47 
1.39 

1.34 

1.32 

1.32 

A P P E N D I X  

In  add i t i on  to what  has been  said in  the be g i nn i ng  of this article,  below we give express ions  for the  two 

momen t s  of the coll is ion in tegra l  of the d i scon t inuous  velocity funct ions  for the so l id-sphere  model  of the molecules ,  

in the calcula t ion of which an  er ror  was made  in  [6 ]: 

[Cly sign Clx, C2y sign C2x]l 2 = 

8 1 + 1 (Mma x + 
= I0 M I ~  3 2 ~  

+ 1 - Vr-M1 M2)  -1- 1 [ 2 (Ml~2 + 

(M1 m2) 

q_M23'2) _ M 1 - M  2 +-~(M~I  q- 
(A.1.) 

[Cly Clx sign Clx, C2y C2x sign C2x]12 = 

16 1 
= 1 0  - - ~  M1M2 --2 ~ l  M2 + 

+ 
6 vr-~l M2 5 ( M  1 M2)3'2 

371 



4 Mma x 
[1 + 4Mma x - 2M2max - 

M 1 M 2 [  1 ( 2  
- 2 ( l + M m a x ) ~ l M 2 ] + - - ~ -  M-~ 15 

M13 M~I+2M~I)+ l---k--( 2 M 1  s~ 15 M23 M~2+2M~2]] + 

(A.2) 4 (M1 - M 2 )  (1 + (1 + - . 

For the indicated moments of the collision integrals the authors of [6 ] obtained analytical expressions that 
diverge in the limiting cases M 1 ~ 0 and Mz -~ 0. There is no such divergence in (A1) and (A2) and it should not 
be present from both physical and mathematical viewpoints. Note also that the values of the moments of the collision 
integrals (A1) and (A2) coincide with the results given by Breton in [5 ], and therefore the criticism of Breton in 
[6 ] is not justifiable and is misleading. 

N O T A T I O N  

2, mean free path of mixture molecules; U, mass velocity of the mixture; T, temperature; D12 and % 
coefficients of mutual diffusion and viscosity of the mixture; k, Boltzmann constant; hi, mi, t7 i and vi, concentration, 
mass, effective diameter, and intrinsic velocity of molecules of the i-th componentof the mixture, respectively; 
nio , Ri, and Mi, relative concentration, diameter, and mass of molecules; ci, dimensionless intrinsic velocity of 
molecules of the i-th componentof the mixture; fi, velocity distribution function of mixture molecules; if, equilibrium 
Maxwellian distribution function; ~0~-E and ~0~, Chapman-Enskog and Barnett functions; ~i, correction to the 
distribution function to describe the effect of the wall; KDSI, KTSI, and KSI , coefficients of diffusional, thermal, 
and isothermal slip; K~S l and K~.sl, coefficients of Barnett slip. 
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