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BOUNDARY CONDITIONS FOR THE SLIPPAGE OF A
BINARY MIXTURE OF GASES AND THEIR
APPLICATION IN THE DYNAMICS OF AEROSOLS.

1. FLOW OF A MIXTURE OF GASES ALONG A
SOLID PLANE WALL

Yu. I. Yalamov, A. A. Yushkanov, and UDC 532.529.5
S. A. Savkov

We investigate the flow of a thefmally and concentrationally inhomogeneous binary mixture of gases near a
solid nonevaporating surface. Using the method of half-space moments to solve the kinetic equation with the
Boltzmann collision integral, we determine the velocity distribution function of the molecules of the mixture
components. The slip velocity of the mixture is calculated.

Theoretical investigations of the state of inhomogeneous mixtures of gases near the surfaces of bodies
immersed in a flow were carried out in a number of works (see, e.g., [1—61]). In most cases use was made of model
forms of the collision integral [1—4]. In [3, 6], a kinetic equation with the Boltzmann collision integral was solved.
But in [5] the author limited the solution to two moments in the distribution function. The authors of [6] used
four moments and considered the specific case of a dilute mixture where the concentration of the molecules of one
of the components was small compared to that of the other. Moreover, in [6] an error was made when the moments
of the collision integral of discontinuous velocity functions were calculated. It should be noted that in [1, 5, 6] only
diffusional slip was considered. There, thermodiffusional effects were not taken into account.

Let us consider the flow of a binary mixture of gases along a solid plane wall in a field of tangential (to its
surface) temperature and concentration gradients of the mixture components, provided that the mass velocity of
the gas increases uniformly with distance from the wall. It is assumed that changes in the concentration,
temperature, and mass velocity of the mixture are small over the mean free path of its molecules 4, and the gradients
of the temperature T and the relative concentration of the first component of the mixture njg = n1/n (n=ny + ny)
coincide in direction with the mass velocity of the mixture U. The latter assumption does not diminish the generality
of the results, since otherwise the slip velocity is merely determined as the vector sum of the velocities of diffusional,
thermal, and isothermal slips.

Let us introduce a coordinate system with origin on the wall surface. The X axis is directed along the
normal and the Y axis along U. The state of the mixture is described by the velocity distribution function of the
molecules of the mixture components
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Here ®;(x, v; ) is the correction to for the volumetric distribution describing the influence of the wall. Outside the
Knudsen layer, i.e., when x >> 1, ®; = 0:
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The coefficients A?, A,l, B,, D?, D1 ABI ABl, and D are given in [7]. The terms in the Chapman-Enskog function
zpc g involving AO and D describe thermodiffusional effects.

The distribution function (1) takes into account the Barnett terms wi;. Generally speaking, Barnett slip is
an effect of higher order of smallness, and therefore it can be neglected when determining the gas flow velocity
along a plane surface. However, its calculation is of interest in its own right. Moreover, account for Barnett slip is
necessary when considering a flow of gas past a curved surface, which will be the subject of the next paper.

The correction ®;(x, v;) is determined from the solution of the Boltzmann linearized equation [7]
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(1;; is the linearized collision integral defined in [7]).
In accordance with the traditional procedure of the method of half space-moments [1—-6], we expand ®;
in a series in half-space velocity polynomials. Limiting ourselves to four moments, we write
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P0=cy, P1=cysigncx, P2=cxcy, P3=cxcysign Cy s
signx=1(x>0), signx=-1(x<0).

The coefficients af(x) are determined by solving a system of differential moment equations constructed by
multiplying Eq. (2) by P; and integrating over the entire space of velocities:
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The notation of the bracketed integrals corresponds to the traditional one adopted in [7]. Analytical expressions
for these integrals in the case of molecules interacting as rigid spheres are given in the Appendix.
The solution of system of equations (4) has the form

'\h-.

}i‘, ¢, exp{~rx}, ©®

368



Here y, is determined from the condition of the determinant of the system of algebraic equations cbtained upon
subsiitution of solutions (§) into Egs. (4) being equal to zero. In this case, the positive roots are retained. The
coefficients af,, are expressed via determinants of rank 7. The integration constants C,, are determined from kinetic
boundary conditions for the reflection of gas molecules from the wall:
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where R(v;, v;) is the probability that a molecule with the velocity»v; acquires the velocity v; as a result of reflection
from the wall. The superscripts "—" and "+" denote distribution functions of molecules incident on and reflected
from the wall, respectively.

Following the procedure developed in [8, 9], we present conditions (6) in moment form. For this, we
multiply them by v;, and v;v;y, and integrate over the positive half-space of velocities:
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Substituting the distribution function (1), (3), (5) into Eqgs. (7) and integrating, we obtain a system of
algebraic equations for determining the integration constants and the slip velociiy of the mixture, the solution of
which yields
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Here, the coefficients of mutual diffusion D, and dynamic viscosity # of the mixture, which are calculated in the
first approximation of the Chapman-Enskog method [7], are separated; A = n{n/ 2pnkT)1/2; p = nymi + npms.

The values of the kinetic coefficients calculated for specific relationships between the masses, diameters,
and concentrations of the molecules of the mixture components when the molecules are represented by rigid spheres
in the case of purely diffuse reflection from the wall (Qf = vl-xf?) are given in Tables 1-7, where
M; = m;/(my + my); R;= 0i2/(01 + 03); o; is the effective diameter of the molecules of the i-th mixture
component. All the calculations in the tables are given for the solid-sphere model of the molecules on condition of
purely diffuse reflection from the surface.

Attention should be paid to the dependence of the diffusional slip coefficient of a dilute mixture on the
relationship between the diameters of the molecules of its components (Table 1). In the region R; < 0.6 for
M, < 0.6 we observe a decrease in Kpg; with Ry. Such a behavior of the dependence of Kpg; on R; is due to the
contribution of the thermodiffusional terms in the Chapman-Enskog function to the slip velocity. Neglect of the
indicated terms leads to a qualitative change in this dependence, i.e., to growth of Kpg; with a decrease in Rj. In
particular, for Ry = 0.2 and M; = 0.1 the quantity Kpg; is equal to 7.52. We can also note that with other
relationships between the masses, diameters, and concentrations of the molecules of the mixture components the
contribution of thermodiffusional effects to the diffusional slip velocity amounts to at least 109%.

Of particular interest is the calculation of the slip velocity due to the Barnett terms in the distribution
function (Tables 3 and 4). In [10, 11] the Barnett slip velocity is calculated as
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TABLE 1. Values of Kpg; at nyg = 0.001

Ml R}
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1 2.08 5.76 6.03 5.63 4.93 4.01 2.89 1.58 0.11
0.2 ~1.42 1.70 2.06 1.95 1.64 1.20 0.66 0.02 ~0.71
0.3 -1.79 0.59 0.89 0.84 0.64 0.36 0.01 -0.40 -0.87
0.4 —1.40 0.21 0.40 0.36 0.21 0.01 —-0.25 —-0.54 —0.88
0.5 -0.79 0.10 0.18 0.12 0 —0.16 -0.36 -0.59 —-0.84
0.6 -0.21 0.08 0.07 -0.00 -0.11 -0.24 —-0.40 -0.57 -0.78
0.7 0.17 0.08 0.01 -0.07 -0.16 -0.27 -0.39 -0.53 —-0.69
0.8 0.27 0.04 -0.04 -0.11 -0.19 -0.27 —-0.36 -0.47 —-0.59
0.9 0.12 -0.02 —-0.08 -0.13 -0.17 -0.23 -0.29 -0.36 —-0.44
TABLE 2. Values of Kpg; at nyg=nyp=0.5
M1 R1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1 1.00 0.87 0.74 0.60 0.46 0.35 0.26 0.19 1.13
0.2 0.96 0.84 0.70 0.56 0.41 0.28 0.17 0.08 0.01
0.3 0.81 0.70 0.58 0.44 0.29 0.15 0.03 —-0.07 -0.15
0.4 0.64 0.55 0.43 0.29 0.15 0.01 -0.12 -0.23 —-0.31
0.5 0.48 0.39 0.27 0.14 0 -0.14 -0.27 -0.39 —0.48
TABLE 3. Values of K3, at nyo = 0.001
Rl
M1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1 -19.51 —-18.78 ~16.99 —13.44 -7.11 3.27 19.2§ 42.60 75.36
0.2 —-8.27 —-7.93 -7.14 -5.64 -3.06 1.08 7.34 16.40 29.03
0.3 —4.56 —4.33 ~3.84 —-2.92 -1.37 1.07 4.72 9.97 17.24
0.4 —-2.74 .—2.58 ~2.22 -1.57 —0.49 1.18 3.67 7.22 12.13
0.5 —1.69 -1.59 -1.29 -0.80 0 1.24 3.07 5.68 9.26
0.6 -1.02 -0.92 -0.71 —0.33 0.29 1.24 2.64 4.62 7.34
0.7 -0.58 -0.50 -0.34 —-0.04 0.43 1.16 2.24 3.76 5.85
0.8 -0.29 -0.23 -0.11 0.11 0.46 1.01 1.81 2.95 4.50
0.9 -0.10 -0.06 0.01 0.16 0.39 0.74 1.27 2.02 3.04
TABLE 4. Values of KBDSI atnjg = nyy = 0.5
R1
M1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1 -6,04 —4.58 —-3.14 -1.90 -0.93 —-0.24 0.21 0.51 0.69
0.2 -35.60 —4.44 -3.19 —-1.98 —0.93 ~0.08 0.56 1.01 1.32
0.3 ~4.86 -3.92 ~2.85 -~1.74 —-0.70 0.22 0.96 1.54 1.97
0.4 -4.09 -3.31 -2.39 —-1.39 -0.37 0.58 1.42 2.11 2.64
0.5 —-3.34 -2.70 —-1.90 -0.99 0 0.99 1.90 2.70 3.34

where ogy is the stress tensor due to the Barnett terms in the distribution function. For a simple gas this approach

gives KIT;S[ = —3, Kg; = —3.44. The difference from the results of a direct calculation (KI%SI = —3.57) amounts to
3%. In the case of a mixture of gases this-difference for Kl%sl usually does not exceed 109%,. For the diffusional
slip velocity the difference is much greater. For example, according to Eq. (8), when nyp = 0.001, M; =0.1, Ry =
1.8, we obtain K%Sl = 11.4, which differs from the corresponding value in Table 3 by almost an order of magnitude.
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TABLE 5. Values of Krg; at njg = nyg = 0.5

R1
Mi 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1 1.35 1.22 1.10 0.99 0.90 0.83 0.76 0.71 0.66
0.2 1.30 1.21 1.13 1.04 0.97 0.91 0.86 0.81 0.78
0.3 1.28 1.23 1.17 1.11 1.06 1.01 0.97 0.94 0.91
0.4 1.24 1.22 1.19 1.16 1.13 1.10 1.08 1.06 1.05
0.5 1.16 1.16 1.16 1.15 1.1§ 1.1§ 1.16 1.16 1.16
TABLE 6. Values of KI%SI atnjg = ny = 0.5
Ry
M 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1 ~8.89 —6.84 -5.17 —4.06 -3.45 -3.17 -3.02 -2.91 -2.84
0.2 -6.74 -5.60 -4.58 —3.82 -3.38 -3.19 -3.13 —-3.13 -3.15
0.3 —-5.76 —-5.02 —4.32 -3.77 —3.45 -3.34 —3.38 -3.47 -3.57
0.4 —5.12 —4.62 —4.13 -3.74 -3.53 —-3.52 —3.66 —3.86 —4.06
0.5 —4.58 —4.25 -3.92 —3.66 -3.57 —3.66 -3.92 —4.25 -4.58
TABLE 7. Values of Kg; at njg=ny=0.5
Ry
Ml 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.1 1.49 1.39 1.32 1.29 1.30 1.34 1.38 1.43 1.47
0.2 1.41 1.33 1.26 1.22 1.22 1.24 1.29 1.34 1.39
0.3 1.36 1.29 1.22 1.18 1.17 1.20 1.24 1.29 1.34
0.4 1.33 1.27 1.21 1.17 1.15 1.17 1.21 1.27 1.32
0.5 1.32 1.26 1.20 1.16 1.1§ 1.16 1.20 1.26 1.32
APPENDIX

In addition to what has been said in the beginning of this article, below we give expressions for the two
moments of the collision integral of the discontinuous velocity functions for the solid-sphere model of the molecules,
in the calculation of which an error was made in [6]:
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For the indicated moments of the collision integrals the authors of [6] obtained analytical expressions that
diverge in the limiting cases M - 0 and M3 -» 0. There is no such divergence in (Al) and (A2) and it should not
be present from both physical and mathematical viewpoints. Note also that the values of the moments of the collision
integrals (Al) and (A2) coincide with the results given by Breton in [5], and therefore the criticism of Breton in
[6] is not justifiable and is misleading.

NOTATION

A, mean free path of mixture molecules; U, mass velocity of the mixture; T, temperature; Dy, and 7,
coefficients of mutual diffusion and viscosity of the mixture; &, Boltzmann constant; n;, m;, o; and v;, concentration,
mass, effective diameter, and intrinsic velocity of molecules of the i-th componentof the mixture, respectively;
n;0, R;, and M;, relative concentration, diameter, and mass of molecules; c¢;, dimensionless intrinsic velocity of
molecules of the i-th componentof the mixture; f;, velocity distribution function of mixture molecules; ff) , equilibrinum
Maxwellian distribution function; wic_E and w%;, Chapman-Enskog and Barnett functions; ®;, correction to the
distribution function to describe the effect of the wall; Kpg;, Krs, and Kgy, coefficients of diffusional, thermal,
and isothermal slip; K%sz and Kl%s[, coefficients of Barnett slip.
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